MiR-223-3p inhibits angiogenesis and promotes resistance to cetuximab in head and neck squamous cell carcinoma
نویسندگان
چکیده
MicroRNAs (miRs) participate in tumor growth and dissemination by regulating expression of various target genes. MiR-223-3p is suspected of being involved in head and neck squamous cell carcinoma (HNSCC) growth although its precise role has not been elucidated. In this study, we showed that miR-223-3p is present in biopsies of HNSCC patients and that its presence is correlated with high neutrophil infiltrate. We found that overexpression of miR-223-3p slightly increased proliferation of the CAL27 squamous carcinoma cell line both in vitro and in vivo. Moreover, miR-223-3p induced CAL27 apoptosis in an orthotopic xenograft mouse model, counteracting the proliferative effect and resulting in no impact on overall tumor growth. We analyzed the effect of miR-223-3p overexpression on signaling pathways and showed that it induced pERK2, pAKT and AKT, consistent with an increase in cell proliferation. In addition, we found that miR-223-3p reduced the STAT3 level correlating with increased cell apoptosis and inhibited vasculature formation. In HNSCC tissues, miR-223-3p expression was inversely correlated to CD31, highlighting the relationship between miR-223 and vessel formation. Finally, we studied the effect of miR-223-3p on response to selected anticancer agents and showed that cells expressing miR-223-3p are more resistant to drugs, notably cetuximab. In conclusion, our study is the first to show the antiangiogenic properties of miR-223-3p in HNSCC patients and to question whether expression levels of miR-223-3p can be evaluated as an indicator of eligibility for non-treatment of HNSCC patients with cetuximab.
منابع مشابه
Density of mast-cells and Microvessels Density in head and neck cutaneous Squamous Cell Carcinoma
Background and Aim: Cutaneous squamous cell carcinoma (CSCC) is the second most common skin cancer. Mast cells may play a role in tumor progression and metastasis by increasing angiogenesis. The aim of this study was to investigate the role of mast cells by increasing angiogenesis in invasion of head and neck cutaneous squamous cell carcinoma. Materials and Methods: In this cross-sectional stud...
متن کاملRAS/PI3K crosstalk and cetuximab resistance in head and neck squamous cell carcinoma.
PURPOSE Cetuximab, an antibody directed against the EGF receptor, is an effective clinical therapy for patients with head and neck squamous cell cancer (HNSCC). Despite great clinical promise, intrinsic or acquired cetuximab resistance hinders successful treatment outcomes but little is known about the underlying mechanism. EXPERIMENTAL DESIGN To study the role of oncogenic HRAS in cetuximab ...
متن کاملReview of cetuximab in the treatment of squamous cell carcinoma of the head and neck
Cetuximab is a monoclonal antibody able to inhibit and to degrade the transmembrane receptor Her-1, also known as epidermal growth factor receptor (EGFR). The inhibition of EGFR is of major importance since the receptor influences many important tumor cell activities including tumor growth, neo-angiogenesis, inhibition of the apoptotic response to chemotherapy and radiotherapy. Available experi...
متن کاملRegulation of Heparin-Binding EGF-Like Growth Factor by miR-212 and Acquired Cetuximab-Resistance in Head and Neck Squamous Cell Carcinoma
BACKGROUND We hypothesized that chronic inhibition of epidermal growth factor receptor (EGFR) by cetuximab, a monoclonal anti-EGFR antibody, induces up-regulation of its ligands resulting in resistance and that microRNAs (miRs) play an important role in the ligand regulation in head and neck squamous cell carcinoma (HNSCC). METHODOLOGY/PRINCIPAL FINDINGS Genome-wide changes in gene and miR ex...
متن کاملCancer Therapy: Preclinical RAS/PI3K Crosstalk and Cetuximab Resistance in Head and Neck Squamous Cell Carcinoma
Purpose: Cetuximab, an antibody directed against the EGF receptor, is an effective clinical therapy for patients with head and neck squamous cell cancer (HNSCC). Despite great clinical promise, intrinsic or acquired cetuximab resistance hinders successful treatment outcomes but little is known about the underlying mechanism. Experimental Design: To study the role of oncogenic HRAS in cetuximab ...
متن کامل